Hash-based Signatures

Andreas Hiilsing
Eindhoven University of Technology

Executive School on Post-Quantum Cryptography
July 2019, TU Eindhoven

Post-Quantum Signatures

Lattice, MQ, Coding P

@ Signature and/or key sizes

2
Y1 =X XX =X X, + Xy

_u2
Y, = X3 + X, X3 + XX, + X +1

@ Runtimes Ya =

@ Secure parameters o o ed W b

02/07/2019 https://huelsing.net PAGE 2

Hash-based Signature Schemes

[Mer89]

FI6 1 :
AN BUTHENTIEATION TREE WITH N = 8,

} Pace 41B
.\ - - .

02/07/2019 https://huelsing.net PAGE 3

RSA — DSA — EC-DSA...

<

Digital
signature
scheme

02/07/2019 https://huelsing.net PAGE 4

Hash function families

(Hash) function families
(aka. keyed functions)

H: {0,1}"x {0,1}™— {0,1}"
Hk(x) — H(k' X)

Requirem =n
and H, (x) is ,efficient” Hy,

One-wayness

H:{0,1}"*x {0,1}"—> {0,1}" v, k
k <5 {0,1}" l
x «<p {0,1}"

Ve = Hk(x)

Success if H,(x*) =y,

02/07/2019 https://huelsing.net 7

Collision resistance
H:{0,1}"x {0,1}"— {0,1}"
k <5 {0,1}"

Success if

Hy (x1) = Hy(x3) and
X{ # X5

02/07/2019 https://huelsing.net 8

Second-preimage resistance
H:{0,1}"x {0,1}"— {0,1}" Xe, k

k <5 {0,1}" l
Xc <R {O'l}m

Success if

Hy (xc) = Hy(x") and
Xo X

[Decisional version: Does a valid response exist? % NE'A//
02/07/2019 https://huelsing.net 9

Undetectability

H:{0,1}"x {0,1}""—> {0,1}" Ve, k
k <5 {0,1}" l
b «<p {0,1}

else
YC (_R {Oll}n

02/07/2019 https://huelsing.net 10

Pseudorandomness

H:{0,1}"x {0,1}"> {0,1}"

1" b
J /\ Hbp=1
A N J U ' X R k (—R {O,l}n
‘_ g= Hy y
Y= g((x)
\/ Else
l g <R Fm,n

b*

Generic security

 ,Black Box” security (best we can do without
looking at internals)

* For hash functions: Security of random function family
 (Often) expressed in #queries (query complexity)

* Hash functions not meeting generic security
considered insecure

Generic Security - OWF

Classically:
* No query: Output random guess
1
ow _
Succ, " = on

* One query: Guess, check, output new guess

2
Succ{V = =

271
e g-queries: Guess, check, repeat g-times, output new
guess

ow _ 4q+1
Succ” = —

2n
* Query bound: O(2")

Generic Security - OWF

Quantum:

* More complex

e Reduction from quantum search for random H

* Know lower & upper bounds for quantum search!

* Query bound: e(2™/2)
* Upper bound uses variant of Grover

(Disclaimer: Currently only proof for 2™ > 2™)

Generic Security

| oW | SRR | PR

Classical ©(2™) 02" 0(2™?%) 02" (2"

Quantum O(2™2) @(2™2%) ©(2™3) 0(2v?%) e(2M?)

* conjectured, no proof

02/07/2019 https://huelsing.net 15

Hash-function properties

stronger /
easier to
break

Assumption /

Attacks

weaker /
harder to
break

02/07/2019

https://huelsing.net

16

Attacks on Hash Functions

MD5 MD5 SHA1
Collisions Collisions Collisions
(theo.) (practical!) (practical!)
SHAL MD5 & SHA-1
Collisions No (Second-) Preimage
(theo.) Attacks!
2004 2005 2008 2017
02/07/2019 https://huelsing.net 17

Basic Construction

Lamport-Diffie OTS (am79

Message M =bl,...,bm, OWF H * = n bit
\
.)
PK ol ¢ o] T
bl Mux b2 bm Mux
Si g sk;,b1 § ° ° ° sk‘,:,,,:,m

02/07/2019 https://huelsing.net 19

EU-CMA for OTS

(o, M)

Success if M* #= M and
Verify(pk,c*, M*) = Accept

Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.

Merkle’s Hash-based Sighatures

ESIG =(=2,25.00,0)

P

A [@ [w\ [w\ [w\ [w)

P p JO e Jo L Jo Jo

OTS: OTS QTS QTS QTS QTS OTS OTS
< i 1 1 sk i 1 1 I =

., o
‘e .
......

02/07/2019 https://huelsing.net 22

Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma
secure signature scheme and H is a random element
from a family of collision resistant hash functions.

Winternitz-OTS

Recap LD-OTS

Message M = b1,...,bm, OWFH

[Lam79]

SK sk, o sk, 4 °
H H
PK PKyo| Ky *

bl Mux b2

Si g SKy b1

02/07/2019

https://huelsing.net

sk SKo 1
H \-I / H
pkm,O\ F,km.l
bn Mux
\ 4
° ° SK. bm
25

LD-OTS in MSS
5.00.0)

SIG = (i=2, .9,

Verification:
L Verify [
2. Verify authenticity of .°

We can do better!

02/07/2019 https://huelsing.net

26

Trivial Optimization

Message M = b1,...,,bm, OWFH

SK sk, o sk, 4 ° ° ° sk o SK 1
H H H H H H
\ 4 \ 4 Y A\ 4 A\ 4 A\ 4
PK PKy o pkyq g o g PKin,c PKm.1
bl‘l\;Mux / Mux —-b1 bm ‘l\;Mux / Mux
Sig Sig1 o Sigy 1 ° ° ° Si€m 0 Sigm 1
02/07/2019 https://huelsing.net

—bm

Optimized LD-OTS in MSS
SIG = (i:2,x 1O0,0O)

Verification:

1. Compute ° from L
2. Verify authenticity of .°

Steps 1+ 2 together verify Ly

02/07/2019 https://huelsing.net

28

Let’s sort this

Message M =b,,....b,,, OWFH
SK: sk, ...,5K,SK 115+, SKo
PK: H(sk,),...,H(sk.),H(sk.),...,H(sky)

Encode M: M= M| |-=M =b,,.. ,b
(instead of by, —b,,.- b —b—

—

sk, ,ifb =1

Sig: sig; = ~
H(sk) , otherwise

Checksum with bad
performance!

02/07/2019 https://huelsing.net

Optimized LD-OTS

Message M =b,,....b,,, OWFH

SK: 5Ky,.e,SK i, SK s SKi 14108 m

PK: H(sky), ..., H(sky),H(SKyq) e HISK 1105 m)
Encode M: M“=b_,....b_,— X1 b;

—

sk, ,ifb =1

Sig: sig; = —

H(sk) , otherwise

IF one b is flipped from 1 to 0, another b; will flip from 0 to 1

Function chains

Function family: H:{0,1}"*x {0,1}"- {0,1}"
k <, {0,1}"

Parameter w
Chain: c'(x) = H (ci‘l(x)) =HoHo:-0oH(x)

\

!

I-times

cO(x) = x

O o) o) o) o) o) o) o) o) o) o) o)
Y Y Y Y Y Y Y Y

N\ N\ T\

c'(x) = Hy(x)

WOTS

Winternitz parameter W, security parameter n,
message length m, function family h

Key Generation: Compute [, sample H,
c(sk,) = sk, pk; = c"1(sky)

O—O—O—O—0—O0—0—0—0—0 -O

/ c(sky)
%

\b ci(sk,) pk= ci(sk,)
o
- O—O—O—O—O—O—O—O—O—O—O—O

cO(sk,) = sk,

@
Q

O
O
O
O
O
O
O
O
O
O

WOTS Signature generation

cO(sk,) = sk,

s\
\\
\\~
A
O o) o) .
> >

—/ -/ T\
6,=C(sky)

Signature: ,
6 =(0y,...,0)) pk,= (s,
O o) o) o) o) o) o) J% o) o) o) o) ;O
N\ S T\ T\ S T\ S T\ T\ S T\ -
cO(sk,) = sk, o,=cP(sk,)

02/07/2019 https://huelsing.net 33

WOTS Signature Verification

Verifier knows: M, w

~

~,
~
~.
~
~.
~
~,
~.
~.
~.
~
~.
~
~.
~
~.
~
~.
~
~,
~.
~.
~
~.
~,
~,
~.
~
~.
~
~,
~
~.,
~
~.
~
~.
~.
~,
SS
~

CH HCH pky
M M VAR M VAR M X VA ;O) O
_/ _/ N/ _/ N/ _/ N/ N/ e -
o c*(cy) ¥ 17h1 ()
Signature:
G - (Gl, e o o , G/)
vl pkz
O—O—0O—0O—0O0—0 =20
G, =171 (s,)

02/07/2019 https://huelsing.net 34

WOTS Function Chains

For x € {0,1}" define ¢’ (x) = x and
« WOTS: c*(x) = Hp(c* 1(x))

e WOTS*: ci(x) = Hp (¢! 1(x) ® 1)

WOTS Security

Theorem (informally):

W-OTS is strongly unforgeable under chosen message attacks if H is
a collision resistant family of undetectable one-way functions.

W-OTS" Is strongly unforgeable under chosen message attacks if H
is a 2"d-preimage resistant family of undetectable one-way
functions.

W-OTS" Is strongly unforgeable under chosen message attacks if H
is a 2"d-preimage resistant and decisional 2"-preimage resistant
family of functions.

02/07/2019 https://huelsing.net 36

XMSS

XMSS

Tree: Uses bitmasks

O

Leafs: Use binary tree
with bitmasks

OTS: WOTS?

Message digest:
Randomized hashing

Collision-resilient
-> signature size halved

02/07/2019 https://huelsing.net 38

Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation
(= Building first tree on each layer)
O(2") - 0(d - 2M%)
1 1

-> Allows to reduce 0@ I

worst-case signing times
1 1

-— —

Multi-target attacks

Multi-target attacks

« WOTS & Lamport need hash function h to
be one-way

e Hypertree of total height 60 with WOTS
(w=16) leads > 26$1- 57 ~ 266
images.

* Inverting one of them allows existential
forgery %at least massively reduces
complexity)

* g-query brute-force succeeds with
probability © (1) conventional

2n—66

and @(a’)quantum

zn—66

* We loose 66 bits of security! (33 bits
guantum)

Multi-target attacks: Mitigation

* Mitigation: Separate targets
[HRS16]

 Common approach:

* In addition to hash function
description
and ,input” take

* Hash ,Address”
(uniqueness in key pair)

* Hash ,key“ used for all hashes of
one key pair
(uniqueness among key pairs)

Multi-target attacks: Mitigation

* Mitigation: Separate targets
[HRS16]

 Common approach:

* In addition to hash function
description
and ,input” take

* Hash ,Address”
(uniqueness in key pair)

* Hash ,key“ used for all hashes of
one key pair
(uniqueness among key pairs)

New intermediate abstraction:
Tweakable Hash Function

e Tweakable Hash Function:

Th(P,T,M) - MD

P: Public parameters (one per key pair)
T: Tweak (one per hash call)

M: Message

MD: Message Digest

Security properties are determined by instantiation
of tweakable hash!

XMSS In
practice

[Docs] [txt|pdf] [draft-irtf-cfrg...] [Tracker] [Diffl] [Diff2] [Errata]

Internet Research Task Force (IRTF)
Request for Comments: 8391
Category: Informational

ISSN: 20768-1721

INFORMATIONAL
Errata Exist
A. Huelsing
TU Eindhoven
D. Butin

TU Darmstadt
5. Gazdag
genua GmbH

J. Rijneveld
Radboud University
A. Mohaisen

University of Central Florida

May 2018

XMSS: eXtended Merkle Signature Scheme

Abstract

This note describes the eXtended Merkle Signature Scheme (XMsSS), a
hash-based digital signature system that is based on existing
descriptions in scientific literature. This note specifies
Winternitz One-Time Signature Plus (WOTS+), a one-time signature
scheme; XMSS, a single-tree scheme; and XMSS™MT, a multi-tree variant
of XMSS. Both XMSS and XMSS™MT use WOTS+ as a main building block.
XMSS provides cryptographic digital signatures without relying on the
conjectured hardness of mathematical problems. Instead, it is proven
that it only relies on the properties of cryptographic hash
functions. XMSS provides strong security guarantees and is even
secure when the collision resistance of the underlying hash function
is broken. It is suitable for compact implementations, is relatively
simple to implement, and naturally resists side-channel attacks.
Unlike most other signature systems, hash-based signatures can so far
withstand known attacks using quantum computers.

RFC 8391 -- XMSS: eXtended
Merkle Sighature Scheme

* Protecting against multi-target attacks / tight
security
* n-bit hash => n bit security

* Small public key (2n bit)

e At the cost of (Q)ROM for proving PK compression
secure

* Function families based on SHA2 & SHAKE (SHA3)

* Equal to XMSS-T [HRS16] up-to message digest

XMSS / XMSS-T Implementation

C Implementation, using OpenSSL [HRS16]

Signature (kB) | Public Key Secret Key | Bit Security | Comment
(kB) (kB) classical/
quantum

XMSS 236/ h =20,
118 d=1,
XMSS-T 948 2.8 0.064 2.2 256 / h =20,
128 d=1
XMSS 3.59 83 1.3 14.6 196 / h =60,
98 d=3
XMSS-T 10.54 8.3 0.064 14.6 256 / h =60,
128 d=3

Intel(R) Core(TM) i7 CPU @ 3.50GHz
XMSS-T uses message digest from Internet-Draft
All using SHA2-256, w =16 and k=2 https://huelsing.net 47

The LMS
proposal

02/07/2019

[Docs] [tfxt|pdf] [draft-mcgrew-ha...] [Tracker] [Diffl] [Diff2]

INFORMATIONAL

Internet Research Task Force (IRTF) D. McGrew
Request for Comments: 8554 M. Curcio
Category: Informational S. Fluhrer
ISSN: 2870-1721 Cisco Systems
April 2819

Leighton-Micali Hash-Based Signatures

Abstract

This note describes a digital-signature system based on cryptographic
hash functions, following the seminal work in this area of Lamport,
Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in
1995. It specifies a one-time signature scheme and a general
signature scheme. These systems provide asymmetric authentication
without using large integer mathematics and can achieve a high
security level. They are suitable for compact implementations, are
relatively simple to implement, and are naturally resistant to side-
channel attacks. Unlike many other signature systems, hash-based
signatures would still be secure even if it proves feasible for an
attacker to build a quantum computer.

This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF. This has been reviewed by many researchers, both in the
research group and outside of it. The Acknowledgements section lists
many of them.

https://huelsing.net 48

Instantiating the tweakable hash
(for SHA2)

XMSS LMS

+ K = SHA2(pad(PP)| |TW), . MD =
012 SHAD sd(bb)] | Hiv+1), MD = SHA2(PP||TW| |MSG)
MD= SHA2(pad(K)| MSG & BM)

e Standard model proof if K & BM * QROM proof assuming

were random, SHAD | RO
* (Q)ROM proof when generating K s Q

& BM as above (modeling those e ROM proof assuming SHA2

SHAZ invocations as RO) compression function is RO

* Tight proof is currently under _ .
revision * Proofs are essentially tight

Instantiating the tweakable hash

e LMS is factor 3 faster but leads to slightly larger
signatures at same security level

* LMS makes somewhat stronger assumptions about
the security properties of the used hash function

* More research on direct constructions needed

SPHINCS

About the statefulness

* Works great for some settings

* However....
... back-up
... multi-threading
... load-balancing

02/07/2019 https://huelsing.net

52

Stateless hash-based signatures

[NY89,Gol87,Gol04]

Goldreich’s approach [Gol04]: ofs
Security parameter A = 128 5 e
Use binary tree as in Merkle, but... oo
i o o
e ..for security o1 ot
e pickindexiat random; N\,
* requires huge tree to avoid index A
collisions (e.g., height h = 24 = 256).
e ..for efficiency:
* use binary certification tree of OTS key pairs ors ors
(= Hypertree with d = h), ! é

 all OTS secret keys are
generated pseudorandomly.

SP H | N CS [BHH*15]

* Select index pseudo-randomly

* Use a few-time signature key-pair on
leaves to sign messages

 Few index collisions allowed
* Allows to reduce tree height

e Use hypertree: Use d << h.

AEE\

TREE,.

MQtI

h/d TREE,

o——-0

HORST

Few-Time Sighature Schemes

Recap LD-OTS

Message M = b1,...,bn, OWF H * = n bit
- /s\sksk
H \-I / H
PK o o) Pkool | Pkoz
bl bn Mux
Sig e o o sk,

02/07/2019 https://huelsing.net 57

HORS (rro2]

Message M, OWF H, CRHF H’

Parameters t=23,k, with m = ka (typical a=16, k=32)

S K skl1 sk, °

P K pk, pk, b

= n bit

HORS mapping function

Message M, OWF H, CRHF H’ * = n bit
Parameters t=23,k, with m = ka (typical a=16, k=32)

HORS

Message M, OWF H, CRHF H’

Parameters t=22,k, with m = ka (typical a=16, k=32)

*

= n bit

SK skl1 sk, ° ° sk, ,
H H H H

PK pk, pk, Pk pk,
H ’ (M) bl bZ ba bka-z bka-l bka

Y 1

iy Mux Mux Iy

Y Y
60

02/07/2019

https://huelsing.net

HORS Security

* M mapped to k element index set M! € {1, ..., t}*
* Each signature publishes k out of t secrets
* Either break one-wayness or...

* r-Subset-Resilience: After seeing index sets MJ' forr
messages msg;, 1 < j < r, hard to find msg, 1 #
msg; such that M,,‘,+1 e U, <]<TM‘

k
* Best generic attack: Succ, «x(4, q) = q (ﬂ)
— Security shrinks with each signhature!

IF YOU
LIKE IT

YOU SHOULD

UT A
ONIT

R

HORST

Using HORS with MSS requires adding PK (tn) to MSS
signature.

HORST: Merkle Tree on top of HORS-PK

* New PK = Root

* Publish Authentication Paths for HORS signature values
* PK can be computed from Sig

e With optimizations: tn — (k(logt - x + 1) + 2¥)n
* E.g. SPHINCS-256: 2 MB — 16 KB

* Use randomized message hash

SPHINCS

e Stateless Scheme

e XMSSMT + HORST
+ (pseudo-)random index

* Collision-resilient
* Deterministic signing
* SPHINCS-256:

* 128-bit post-quantum secure
* Hundrest of signatures / sec
e 41 kb signature

* 1 kb keys

02/07/2019 https://huelsing.net

h/d I TREE.

h/d I AEEQ\

Owg_ D
log t I HORST
S
64

SPHINCS?

Joint work with Jean-Philippe Aumasson, Daniel J. Bernstein,
Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas
Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe

SPHINCS* (our NIST submission)

* Strengthened security gives smaller signatures

* Collision- and multi-target attack resilient

* Fixed length signatures

* Small keys, medium size signatures (lv 3: 17kB)

e Sizes can be much smaller if g_sign gets reduced
* The conservative choice

FORS (Forest of random subsets)

 Parameterst, a =logt, k such that ka =m

02/07/2019

68

Verifiable index selection

(and optionally non-deterministic randomness)

« SPHINCS:
(idx||[R) = PRF(SK.prf M)
md = Hpeg (R, PK, M)

* SPHINCS™:

R = PRF(SK. prf, OptRand, M)
(md||idx) = Hpsg (R, PK, M)

Verifiable index selection

Improves FORS security

* SPHINCS:
Attacks can target ,weakest”“ HORST key pair

* SPHINCS*:
Every hash query also selects FORS key pair

* Leads to notion of interleaved target subset resilience

Instantiations
(after second round tweaks)

 SPHINCS*-SHAKE256-robust

. SPHINCS*—SHAKE256—simpIe§%§§
e SPHINCS*-SHA-256-robust

e SPHINCS*-SHA-256-simple Svans
* SPHINCS*-Haraka-robust

* SPHINCS*-Haraka-simple %ﬁ?

Instantiations (small vs fast)

n h d log(t) k w bitsec seclevel sig bytes
SPHINCS ™ -128s 16 64 8 15 10 16 133 1 8 080
SPHINCS™-128f 16 60 20 9 30 16 128 1 16 976
SPHINCS™-192s 24 64 8 16 14 16 196 3 17064
SPHINCS™-192f 24 66 22 8 33 16 194 3 35 664
SPHINCS™-256s 32 64 8 14 22 16 255 5 29 792
SPHINCS ™-256f 32 68 17 10 30 16 254 5 49216

02/07/2019

https://huelsing.net

72

Hash-based Signatures in NIST
,Competition”

* SPHINCS”
* FORS as few-time signature
 XMSS-T tweakable hash

e Gravity-SPHINCS (R.I.P.)

* PORS as few-time signature
* Requires collision-resistance
* Vulnerable to multi-target attacks

« (PICNIC)

Table 2: Performance comparison of different symmetric-crypto-based signature schemes on the Intel Haswell microar-
chitecture. All software is optimized using architecture-specific optimizations such as AESNI or AVX2 instructions.

Scheme Cycles Bytes
keypair sign verify sig pk sk
Comparison to SPHINCS-256
SPHINCS-256 [8] 2868 4649 50462 856% 16726524 41000 1056 1038
SPHINCS* (Haraka, robust) 1254 9687 290150020 2739770P 30 696 48 96

(n=192,h=51,d =17,b = 7.k = 45, w = 16)

Comparison to Gravity-SPHINCS

Gravity-SPHINCS [5] 30729 044 392% 32564 796% 6257527 max:35 168 32 1048608
(parameter-set L) avg: ?¢
SPHINCS* (Haraka robust) 1257 826° 388402687 3467192P 35 664 48 96

(n=192h=66,d =22,b=28k=33w=16)

SPHINCS* (Haraka, simple) 1892 462° 350293807 1460204° 30 552 48 96
(n=192,h =64,d = 16,b = 7,k = 49, w = 16)

Comparison to Picnic

Picnic2-L5-FS [15] 35716° 1346724260° 387637876° max:54732 65 97
avg: 46282
SPHINCS™ (SHA-256, simple) 85946 8827 1121074 298" 4903 926" 29792 64 128

(n=256,h=64,d=8b=14k =22, w = 16)

@ As reported by SUPERCOP [10] from 3.5GHz Intel Xeon E3-1275 V3 (Haswell)

b Median of 100 runs on 3.5GHz Intel Xeon E3-1275 V3 (Haswell), compiled with gcc-5.4 -03 -march=native -fomit-frame-pointer -flto
¢ As reported by [15] for the optimized implementation on a 3.6GHz Intel Core i7-4790K (Haswell)

4 Neither [5] nor [6] report the average size of signatures; the analysis in [4] suggests that it is about 1KB smaller than the worst-case size.

02/07/2019 https://huelsing.net 74

Signatures via Non-

Interactive Proofs:
The Case of Fish & Picnic

Thanks to the Fish/Picnic team for slides

Interactive Proofs

Three move protocol:
commitment a to randomness\

' challenge e
» response z

Prover Verifier

- Important that e unpredictable before sending a

- aka (Interactive) Honest-Verifier Zero-Knowledge Proofs

Non-interactive variant via Fiat-Shamir [FS86] transform

02/07/2019 https://huelsing.net

76

/KBoO

Efficient £-protocols for arithmetic circuits

- generalization, simplification, + implementation of
“MPC-in-the-head” [IKOS0O7]

|dea X
1. (2,3)-decompose circuit into three shares Shiare
2. Revealing 2 parts reveals no information 2
w _wd owd
3. Evaluate decomposed circuit per share RV
AN AR A
4. Commit to each evaluation = B
w! wl wd
1 2 3
5. Challenger requests to open 2 of 3 L/ Tl
NN

6. Verifies consistency I 1T 1

Efficiency
“oU?Heavily depends on #riitittiptieations

High-Level Approach

e Use LowMC v2 to build dedicated hash function
with low #AND-gates

e Use ZKBoo to proof knowledge of a preimage

* Use Fiat-Shamir to turn ZKP into Signature in ROM
(Fish), or

* Use Unruh's transform to turn ZKP into Signature in
QROM (Picnic)

Conclusion

* If you can live with a state, you have PQ signatures
available with XMSS & LMS

* For stateless we are waiting for NIST to finish:
SPHINCS+ & Picnic in second round

Thank you!
Questions?

g £

For references & further literature see
https://huelsing.net/wordpress/?page_id=165

Authentication path
computation

TreeHash

(Mer89)

TreeHash

" TreeHash(v,i): Computes node on level v with leftmost descendant L,
= Public Key Generation: Run TreeHash(h,0)

<
I
>
I
w
I

02/07/2019 https://huelsing.net

83

TreeHash

T

reeHash(v,i)

1
2

3:

o 3o v

: Init Stack, N1, N2

:Forj=itoi+2-1do

N1 = LeafCalc(j)

While N1.level() == Stack.top().level() do
N2 = Stack.pop()
N1 = ComputeParent(N2, N1)

Stack.push(N1)

: Return Stack.pop()

TreeHash

TreeHash(v,i)

L, I-i+1

02/07/2019

https://huelsing.net

I‘i+2V-1

85

Efficiency?

Key generation: Every node has to be computed once.
cost = 2" leaves + 2"-1 nodes
=> optimal

Signature: One node on each level 0 <=v < h.
cost 2"-1 leaves + 2h-1-h nodes.

Many nodes are computed many times!
(e.g. those on level v=h-1 are computed 2! times)
-> Not optimal if state allowed

The BDS Algorithm

[BDSO08]

Motivation
(for all Tree Traversal Algorithms)

No Storage:
Signature: Compute one node on each level 0 <=v < h.

Costs: 2"-1 leaf + 2P-1-h node computations.
Example: XMSS with SHA2-256 and h=20 ->approx. 15min
Store whole tree: 2Mn bits.

Example: h=20, n=256; storage: 2%8bits = 32MB

Idea: Look for time-memory trade-off!

02/07/2019

Use a State

https://huelsing.net

89

Authentication Paths

C
T

02/07/2019

https://huelsing.net 90

Observation 1

Same node in authentication path is recomputed many times!
Node on level v is recomputed for 2V successive paths.

Idea: Keep authentication path in state.
-> Only have to update “new” nodes.
Result

Storage: h nodes

Time: ~ hleaf + h node computations (average)

But: Worst case still 2h-1 leaf + 2P-1-h node computations!
-> Keep in mind. To be solved.

02/07/2019 https://huelsing.net

91

Observation 2

When new left node in authentication path is needed, its children have been part
of previous authentication paths.

Computing Left Nodes

o

v=2

0

02/07/2019

T

QRE@A 1)§ ?eA(i—l—Z"‘l)

T

https://huelsing.net

e

93

Result

Storing {2—‘ nodes

all left nodes can be computed with one node computation / node

Observation 3

Right child nodes on high levels are most costly.

Computing node on level v requires
2V leaf and 2V-1 node computations.

Idea: Store right nodes on top k levels during key generation.
Result
Storage: 2%-2 n bit nodes

Time: ~ h-k leaf + h-k node computations (average)

Still: Worst case 2h-k-1 leaf + 2h-k-1-(h-k) node computations!

02/07/2019 https://huelsing.net 95

Distribute Computation

Intuition

Observation:

" For every second signature only one leaf computation
= Average runtime: ~ h-k leaf + h-k node computations

Idea: Distribute computation to achieve average runtime in worst case.

Focus on distributing computation of leaves

02/07/2019 https://huelsing.net

97

TreeHash with Updates

TreeHash.init(v,i)

1: Init Stack, N1, N2, j=i, j max = i+2"-1
2: Exit

TreeHash.update()

1:1f j <= j_max One leaf per update
2: N1 = LeafCalc(j)

3 While N1.level() == Stack.top().level() do
5: N2 = Stack.pop()

6: N1=ComputeParent(N2, N1)
7: Stack.push(N1)

8:Setj=j+1

9: Exit

02/07/2019 https://huelsing.net 98

Distribute Computation

Concept
" Run one TreeHash instance per level 0 <=v < h-k

= Start computation of next right node on level v when current node becomes
part of authentication path.

= Use scheduling strategy to guarantee that nodes are finished in time.

= Distribute (h-k)/2 updates per signature among all running TreeHash instances

Distribute Computation

Worst Case Runtime

Before:
2hk-1 |leaf and 2h*-1-(h-k) node computations.

With distributed computation:
(h-k)/2 + 1 leaf and 3(h-k-1)/2 + 1 node computations.

Add. Storage
Single stack of size h-k nodes for all TreeHash instances.
+ One node per TreeHash instance.

= 2(h-k) nodes

02/07/2019 https://huelsing.net 100

BDS Performance

Storage:

3h +L2J—3k — 2+ 2% nbit nodes

Runtime:

(h—k)/2+1 leaf and
3(h—k—1)/2+1 node computations.

