
Code-Based Cryptography

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Technische Universiteit Eindhoven

Executive School on Post-Quantum Cryptography
02 July 2019

Error correction

I Digital media is exposed to memory corruption.
I Many systems check whether data was corrupted in transit:

I ISBN numbers have check digit to detect corruption.
I ECC RAM detects up to two errors and can correct one error.

64 bits are stored as 72 bits: extra 8 bits for checks and
recovery.

I In general, k bits of data get stored in n bits, adding some
redundancy.

I If no error occurred, these n bits satisfy n − k parity check
equations; else can correct errors from the error pattern.

I Good codes can correct many errors without blowing up
storage too much;
offer guarantee to correct t errors (often can correct or at
least detect more).

I To represent these check equations we need a matrix.

2

3

Hamming code

Parity check matrix (n = 7, k = 4):

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred, at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means

b1 flipped.
In math notation, the failure pattern is H · b.

4

Hamming code

Parity check matrix (n = 7, k = 4):

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred, at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.

In math notation, the failure pattern is H · b.

4

Hamming code

Parity check matrix (n = 7, k = 4):

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred, at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.
In math notation, the failure pattern is H · b.

4

Coding theory

I Names: code word c, error vector e, received word b = c + e.

I Very common to transform the matrix so that the right part
has just 1 on the diagonal (no need to store that).

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

1 1 0 1
1 0 1 1
0 1 1 1

I Many special constructions discovered in 65 years of coding
theory:

I Large matrix H.
I Fast decoding algorithm to find e given s = H · (c + e),

whenever e does not have too many bits set.

I Given large H, usually very hard to find fast decoding
algorithm.

I Use this difference in complexities for encryption.

5

Code-based encryption

I 1971 Goppa: Fast decoders for many matrices H.
I 1978 McEliece: Use Goppa codes for public-key crypto.

I Original parameters designed for 264 security.
I 2008 Bernstein–Lange–Peters: broken in ≈260 cycles.
I Easily scale up for higher security.

I 1986 Niederreiter: Simplified and smaller version of McEliece.

I 1962 Prange: simple attack idea guiding sizes in 1978
McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

6

Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

7

Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.

Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

8

Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

8

Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

8

Linear codes

A binary linear code C of length n and dimension k is a
k-dimensional subspace of IFn

2.
C is usually specified as

I the row space of a generating matrix G ∈ IFk×n
2

C = {mG |m ∈ IFk
2}

I the kernel space of a parity-check matrix H ∈ IF
(n−k)×n
2

C = {c|Hcᵀ = 0, c ∈ IFn
2}

Leaving out the ᵀ from now on.

9

Example

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0

c = (111)G = (10011) is a codeword.

Linear codes are linear:
The sum of two codewords is a codeword:

c1 + c2 = m1G + m2G = (m1 + m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.

10

Example

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0

c = (111)G = (10011) is a codeword.

Linear codes are linear:
The sum of two codewords is a codeword:

c1 + c2 = m1G + m2G = (m1 + m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.

10

Example

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0

c = (111)G = (10011) is a codeword.

Linear codes are linear:
The sum of two codewords is a codeword:

c1 + c2 = m1G + m2G = (m1 + m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.

10

Example

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0

c = (111)G = (10011) is a codeword.

Linear codes are linear:
The sum of two codewords is a codeword:

c1 + c2 = m1G + m2G = (m1 + m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.

10

Hamming weight and distance

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 0)) =

2

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

11

Hamming weight and distance

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 0)) = 2

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

11

Hamming weight and distance

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 0)) = 2

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

11

Minimum distance

I The minimum distance of a linear code C is the smallest
Hamming weight of a nonzero codeword in C .

d = min
0 6=c∈C

{wt(c)} = min
b6=c∈C

{d(b, c)}

I In code with minimum distance d = 2t + 1, any vector
x = c + e with wt(e) ≤ t is uniquely decodable to c;
i. e. there is no closer code word.

12

Decoding problem

Decoding problem: find the closest codeword c ∈ C to a given
x ∈ IFn

2, assuming that there is a unique closest codeword. Let
x = c + e. Note that finding e is an equivalent problem.

I If c is t errors away from x, i.e., the Hamming weight of e is
t, this is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms,
e.g., Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard:
Information-set decoding (see later) takes exponential time.

13

The McEliece cryptosystem I

I Let C be a length-n binary Goppa code Γ of dimension k with
minimum distance 2t + 1 where t ≈ (n − k)/ log2(n); original
parameters (1978) n = 1024, k = 524, t = 50.

I The McEliece secret key consists of a generator matrix G for
Γ, an efficient t-error correcting decoding algorithm for Γ; an
n× n permutation matrix P and a nonsingular k × k matrix S .

I n, k , t are public; but Γ, P, S are randomly generated secrets.

I The McEliece public key is the k × n matrix G ′ = SGP.

14

The McEliece cryptosystem II

I Encrypt: Compute mG ′ and add a random error vector e of
weight t and length n. Send y = mG ′ + e.

I Decrypt: Compute yP−1 = mG ′P−1+eP−1 = (mS)G+eP−1.
This works because eP−1 has the same weight as e

because P is a permutation matrix.
Use fast decoding to find mS and m.

I Attacker is faced with decoding y to nearest codeword mG ′ in
the code generated by G ′.
This is general decoding if G ′ does not expose any structure.

15

The McEliece cryptosystem II

I Encrypt: Compute mG ′ and add a random error vector e of
weight t and length n. Send y = mG ′ + e.

I Decrypt: Compute yP−1 = mG ′P−1+eP−1 = (mS)G+eP−1.
This works because eP−1 has the same weight as e
because P is a permutation matrix.
Use fast decoding to find mS and m.

I Attacker is faced with decoding y to nearest codeword mG ′ in
the code generated by G ′.
This is general decoding if G ′ does not expose any structure.

15

Systematic form

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Classical decoding is about recovering m from c = mG ;
without errors m equals the first k positions of c .

I Easy to get parity-check matrix from systematic generator
matrix, use H = (Qᵀ|In−k).
Then

H(mG)ᵀ = HGᵀmᵀ = (Qᵀ|In−k)(Ik |Q)ᵀmᵀ = 0.

16

Systematic form

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Classical decoding is about recovering m from c = mG ;
without errors m equals the first k positions of c .

I Easy to get parity-check matrix from systematic generator
matrix, use H = (Qᵀ|In−k).

Then

H(mG)ᵀ = HGᵀmᵀ = (Qᵀ|In−k)(Ik |Q)ᵀmᵀ = 0.

16

Systematic form

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Classical decoding is about recovering m from c = mG ;
without errors m equals the first k positions of c .

I Easy to get parity-check matrix from systematic generator
matrix, use H = (Qᵀ|In−k).
Then

H(mG)ᵀ = HGᵀmᵀ = (Qᵀ|In−k)(Ik |Q)ᵀmᵀ = 0.

16

Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2 given

s ∈ IFn−k
2 so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:

To decode x with syndrome decoder, compute e from Hx,
then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding
problem, unless it has very low weight.

17

Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2 given

s ∈ IFn−k
2 so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:
To decode x with syndrome decoder, compute e from Hx,
then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).

Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding
problem, unless it has very low weight.

17

Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2 given

s ∈ IFn−k
2 so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:
To decode x with syndrome decoder, compute e from Hx,
then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding
problem, unless it has very low weight.

17

The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the
McEliece cryptosystem. This is the schoolbook version.

I Use n × n permutation matrix P and n − k × n − k invertible
matrix S .

I Public Key: a scrambled parity-check matrix

K = SHP ∈ IF
(n−k)×n
2 .

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption: Find a n-bit vector e with wt(e) = t such that
s = Ke.

I The passive attacker is facing a t-error correcting problem for
the public key, which seems to be random.

18

The Niederreiter cryptosystem II

I Public Key: a scrambled parity-check matrix K = SHP.

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = t, because P permutes.
Use efficient syndrome decoder for H to find e′ = Pe and
thus e = P−1e′.

19

Note on codes

I McEliece proposed to use binary Goppa codes.
These are still used today.

I Niederreiter described his scheme using Reed-Solomon codes.
These were broken in 1992 by Sidelnikov and Chestakov.

I More corpses on the way: concatenated codes, Reed-Muller
codes, several Algebraic Geometry (AG) codes, Gabidulin
codes, several LDPC codes, cyclic codes.

I Some other constructions look OK (for now).
NIST competition has several entries on QCMDPC codes.

20

Binary Goppa code

Let q = 2m. A binary Goppa code is often defined by

I a list L = (a1, . . . , an) of n distinct elements in IFq,
called the support.

I a square-free polynomial g(x) ∈ IFq[x] of degree t such that
g(a) 6= 0 for all a ∈ L. g(x) is called the Goppa polynomial.

I E.g. choose g(x) irreducible over IFq.

The corresponding binary Goppa code Γ(L, g) is

{
c ∈ IFn

2

∣∣∣∣S(c) =
c1

x − a1
+

c2
x − a2

+ · · ·+ cn
x − an

≡ 0 mod g(x)

}

I This code is linear S(b + c) = S(b) + S(c) and has length n.

I Bounds on dimension k ≥ n −mt and minumum distance
t ≥ 2t + 1.

21

Reminder: How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P. Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

22

Reminder: How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P. Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

22

How to hide nice code?

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret
permutation of the n positions; this replaces P.

I Use systematic form K = (K ′|I) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k .

I Secret key is polynomial g and support L = (a1, . . . , an).

23

McBits (Bernstein, Chou, Schwabe, CHES 2013)

I Encryption is super fast anyways (just a vector-matrix
multiplication).

I Main step in decryption is decoding of Goppa code. The
McBits software achieves this in constant time.

I Decoding speed at 2128 pre-quantum security:
(n; t) = (4096; 41) uses 60493 Ivy Bridge cycles.

I Decoding speed at 2263 pre-quantum security:
(n; t) = (6960; 119) uses 306102 Ivy Bridge cycles.

I Grover speedup is less than halving the security level, so the
latter parameters offer at least 2128 post-quantum security.

I More at https://binary.cr.yp.to/mcbits.html.

24

https://binary.cr.yp.to/mcbits.html

NIST submission Classic McEliece

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Efficient and straightforward conversion
OW-CPA PKE → IND-CCA2 KEM.

I Open-source (public domain) implementations.
I Constant-time software implementations.
I FPGA implementation of full cryptosystem.

I No patents.

Metric mceliece6960119 mceliece8192128
Public-key size 1047319 bytes 1357824 bytes

Secret-key size 13908 bytes 14080 bytes

Ciphertext size 226 bytes 240 bytes

Key-generation time 1108833108 cycles 1173074192 cycles

Encapsulation time 153940 cycles 188520 cycles

Decapsulation time 318088 cycles 343756 cycles

See https://classic.mceliece.org for more details.
More parameters in round 2.

https://classic.mceliece.org

Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

26

https://www.imperialviolet.org/2018/04/11/pqconftls.html

Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

26

https://www.imperialviolet.org/2018/04/11/pqconftls.html

Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

26

https://www.imperialviolet.org/2018/04/11/pqconftls.html

Goodness, what big keys you have!

I Public keys look like this:

K =

1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

Left part is (n− k)× (n− k) identity matrix (no need to send)
right part is random-looking (n − k)× k matrix.
E.g. n = 6960, k = 5413, so n − k = 1547.

I Encryption xors secretly selected columns, e.g.

0
1
0
0

+

1
0
1
0

+

0
1
1
1

+

1
1
0
1

 =

0
1
0
0

27

Goodness, what big keys you have!

I Public keys look like this:

K =

1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

Left part is (n− k)× (n− k) identity matrix (no need to send)
right part is random-looking (n − k)× k matrix.
E.g. n = 6960, k = 5413, so n − k = 1547.

I Encryption xors secretly selected columns, e.g.

0
1
0
0

+

1
0
1
0

+

0
1
1
1

+

1
1
0
1

 =

0
1
0
0

27

Can servers avoid storing big keys?

K =

1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:
Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

28

Can servers avoid storing big keys?

K =

1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:

Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

28

Can servers avoid storing big keys?

K =

1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:
Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

28

McTiny (Bernstein/Lange)
Partition key

K ′ =

K1,1 K1,2 K1,3 . . . K1,`

K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr ,1 Kr ,2 Kr ,3 . . . Kr ,`

I Each submatrix Ki ,j small enough to fit + cookie into network
packet.

I Server does computation on Ki ,j , puts partial result into
cookie.

I Cookies are encrypted by server to itself using some temporary
symmetric key (same key for all server connections).
No per-client memory allocation.

I Client feeds the Ki ,j to server & handles storage for the server.
I Cookies also encrypted & authenticated to client.
I More stuff to avoid replay & similar attacks.

I Several round trips, but no per-client state on the server.

29

McTiny (Bernstein/Lange)
Partition key

K ′ =

K1,1 K1,2 K1,3 . . . K1,`

K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr ,1 Kr ,2 Kr ,3 . . . Kr ,`

I Each submatrix Ki ,j small enough to fit + cookie into network
packet.

I Server does computation on Ki ,j , puts partial result into
cookie.

I Cookies are encrypted by server to itself using some temporary
symmetric key (same key for all server connections).
No per-client memory allocation.

I Client feeds the Ki ,j to server & handles storage for the server.
I Cookies also encrypted & authenticated to client.
I More stuff to avoid replay & similar attacks.
I Several round trips, but no per-client state on the server.

29

Do not use the schoolbook versions!

30

Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

I Assume that the decoding algorithm decodes up to t errors,
i. e. it decodes y = c + e to c if wt(e) ≤ t.

I Eve intercepts ciphertext y = mG ′ + e.
Eve poses as Alice towards Bob and sends him tweaks of y.
She uses Bob’s reactions (success of failure to decrypt) to
recover m.

I Assume wt(e) = t. (Else flip more bits till Bob fails).

I Eve sends yi = y + ei for ei the i-th unit vector.
If Bob returns error, position i in e is 0 (so the number of
errors has increased to t + 1 and Bob fails).
Else position i in e is 1.

I After k steps Eve knows the first k positions of mG ′ without
error. Invert the k × k submatrix of G ′ to get m

assuming it
is invertible.

I Proper attack: figure out invertible submatrix of G ′ at
beginning; recover matching k coordinates.

31

Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

I Assume that the decoding algorithm decodes up to t errors,
i. e. it decodes y = c + e to c if wt(e) ≤ t.

I Eve intercepts ciphertext y = mG ′ + e.
Eve poses as Alice towards Bob and sends him tweaks of y.
She uses Bob’s reactions (success of failure to decrypt) to
recover m.

I Assume wt(e) = t. (Else flip more bits till Bob fails).

I Eve sends yi = y + ei for ei the i-th unit vector.
If Bob returns error, position i in e is 0 (so the number of
errors has increased to t + 1 and Bob fails).
Else position i in e is 1.

I After k steps Eve knows the first k positions of mG ′ without
error. Invert the k × k submatrix of G ′ to get m assuming it
is invertible.

I Proper attack: figure out invertible submatrix of G ′ at
beginning; recover matching k coordinates.

31

More on sloppy Alice

I This attack has Eve send Bob variations of the same
ciphertext; so Bob will think that Alice is sloppy.

I Note, this is more complicated if IFq instead of IF2 is used.

I Other name: reaction attack.
(1999 Hall, Goldberg, and Schneier)

I Attack also works on Niederreiter version:

Bitflip cooresponds to sending si = s + Ki ,
where Ki is the i-th column of K .

I More involved but doable (for McEliece and Niederreiter)
if decryption requires exactly t errors.

32

More on sloppy Alice

I This attack has Eve send Bob variations of the same
ciphertext; so Bob will think that Alice is sloppy.

I Note, this is more complicated if IFq instead of IF2 is used.

I Other name: reaction attack.
(1999 Hall, Goldberg, and Schneier)

I Attack also works on Niederreiter version:
Bitflip cooresponds to sending si = s + Ki ,
where Ki is the i-th column of K .

I More involved but doable (for McEliece and Niederreiter)
if decryption requires exactly t errors.

32

Berson’s attack

I Eve knows y1 = mG ′ + e1 and y2 = mG ′ + e2;
these have the same m.

I Then y1 + y2 = e1 + e2 = ē. This has weight in [0, 2t].

I If wt(ē) = 2t:
All zero positions in ē are error free in both ciphertexts.
Invert G ′ in those columns to recover m as in previous attack.

I Else: ignore the 2w = wt(ē) < 2t positions in G ′ and y1.
Solve decoding problem for k × (n− 2w) generator matrix G ′′

and vector y′1 with t − w errors; typically much easier.

33

Berson’s attack

I Eve knows y1 = mG ′ + e1 and y2 = mG ′ + e2;
these have the same m.

I Then y1 + y2 = e1 + e2 = ē. This has weight in [0, 2t].

I If wt(ē) = 2t:

All zero positions in ē are error free in both ciphertexts.
Invert G ′ in those columns to recover m as in previous attack.

I Else: ignore the 2w = wt(ē) < 2t positions in G ′ and y1.
Solve decoding problem for k × (n− 2w) generator matrix G ′′

and vector y′1 with t − w errors; typically much easier.

33

Berson’s attack

I Eve knows y1 = mG ′ + e1 and y2 = mG ′ + e2;
these have the same m.

I Then y1 + y2 = e1 + e2 = ē. This has weight in [0, 2t].

I If wt(ē) = 2t:
All zero positions in ē are error free in both ciphertexts.
Invert G ′ in those columns to recover m as in previous attack.

I Else:

ignore the 2w = wt(ē) < 2t positions in G ′ and y1.
Solve decoding problem for k × (n− 2w) generator matrix G ′′

and vector y′1 with t − w errors; typically much easier.

33

Berson’s attack

I Eve knows y1 = mG ′ + e1 and y2 = mG ′ + e2;
these have the same m.

I Then y1 + y2 = e1 + e2 = ē. This has weight in [0, 2t].

I If wt(ē) = 2t:
All zero positions in ē are error free in both ciphertexts.
Invert G ′ in those columns to recover m as in previous attack.

I Else: ignore the 2w = wt(ē) < 2t positions in G ′ and y1.
Solve decoding problem for k × (n− 2w) generator matrix G ′′

and vector y′1 with t − w errors; typically much easier.

33

Formal security notions

I McEliece/Niederreiter are One-Way Encryption (OWE)
schemes.

I However, the schemes as presented are not CCA–II secure:
I Given challenge y = mG ′ + e, Eve can ask for decryptions of

anything but y.

I Eve picks a random code word c = m̄G ′,
asks for decryption of y + c.

I This is different from challenge y, so Bob answers.
I Answer is m + m̄.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transform) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate (for McEliece or Niederreiter).

34

Formal security notions

I McEliece/Niederreiter are One-Way Encryption (OWE)
schemes.

I However, the schemes as presented are not CCA–II secure:
I Given challenge y = mG ′ + e, Eve can ask for decryptions of

anything but y.
I Eve picks a random code word c = m̄G ′,

asks for decryption of y + c.
I This is different from challenge y, so Bob answers.

I Answer is m + m̄.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transform) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate (for McEliece or Niederreiter).

34

Formal security notions

I McEliece/Niederreiter are One-Way Encryption (OWE)
schemes.

I However, the schemes as presented are not CCA–II secure:
I Given challenge y = mG ′ + e, Eve can ask for decryptions of

anything but y.
I Eve picks a random code word c = m̄G ′,

asks for decryption of y + c.
I This is different from challenge y, so Bob answers.
I Answer is m + m̄.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transform) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate (for McEliece or Niederreiter).

34

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:

(n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(n
t

)
additions of 1 column.

35

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:
(n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(n
t

)
additions of 1 column.

35

Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

•
•
•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. Then K ′ = UKP for some permutation matrix P and U the
matrix that produces systematic form.

3. This updates s to Us.
4. If wt(Us) = t then e′ = (00 . . . 0)||Us.

Output unpermuted version of e′.
5. Else return to 1 to rerandomize.

Cost:

O(
(n
t

)
/
(n−k

t

)
) matrix operations.

36

Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

•
•
•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. Then K ′ = UKP for some permutation matrix P and U the
matrix that produces systematic form.

3. This updates s to Us.
4. If wt(Us) = t then e′ = (00 . . . 0)||Us.

Output unpermuted version of e′.
5. Else return to 1 to rerandomize.

Cost: O(
(n
t

)
/
(n−k

t

)
) matrix operations.

36

Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute
their sum Xp. (p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4. Else return to 2 or return to 1 to rerandomize.

Cost:

O(
(n
t

)
/(
(k
p

)(n−k
t−p
)
) [matrix operations+

(k
p

)
column additions].

37

Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute
their sum Xp. (p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4. Else return to 2 or return to 1 to rerandomize.

Cost: O(
(n
t

)
/(
(k
p

)(n−k
t−p
)
) [matrix operations+

(k
p

)
column additions].

37

Leon’s attack 1

1

ZX

︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

I Setup similar to
Lee-Brickell’s attack.

I Random combinations of
p vectors will be dense,
so have wt(s + Xp) ∼ k/2.

I Idea: Introduce early abort by checking
only ` positions (selected by set Z , green lines in the picture).
This forms `× k matrix XZ , length-` vector sZ .

I Inner loop becomes:

1. Pick p with wt(p) = p.
2. Compute XZp.
3. If sZ + XZp 6= 0 goto 1.
4. Else compute Xp.

4.1 If wt(s+ Xp) = t − p then put e′ = p||(s+ Xp).
Output unpermuted version of e′.

4.2 Else return to 1 or rerandomize K .

I Note that sZ + XZp = 0 means that there are no ones in the
positions specified by Z . Small loss in success, big speedup.

38

Stern’s attack
1

1

X Y Z

A

B

I Setup similar to Leon’s and
Lee-Brickell’s attacks.

I Use the early abort trick,
so specify set Z .

I Improve chances of finding
p with s + XZp = 0:

I Split left part of K ′ into two disjoint subsets X and Y .
I Let A = {a ∈ IF

k/2
2 |wt(a) = p}, B = {b ∈ IF

k/2
2 |wt(b) = p}.

I Search for words having exactly p ones in X and p ones in Y
and exactly w − 2p ones in the remaining columns.

I Do the latter part as a collision search:
Compute sZ + XZa for all (many) a ∈ A, sort.
Then compute YZb for b ∈ B and look for collisions; expand.

I Iterate until word with wt(s + Xa + Y b) = 2p is found for
some X ,Y ,Z .

I Select p, `, and the subset of A to minimize overall work.

39

Running time in practice

2008 Bernstein, Lange, Peters.

I Wrote attack software against original McEliece parameters,
decoding 50 errors in a [1024, 524] code.

I Lots of optimizations, e.g. cheap updates between sZ + XZa
and next value for a; optimized frequency of K randomization.

I Attack on a single computer with a 2.4GHz Intel Core 2 Quad
Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

I About 200 computers involved, with about 300 cores.

I Most of the cores put in far fewer than 90 days of work; some
of which were considerably slower than a Core 2.

I Computation used about 8000 core-days.

I Error vector found by Walton cluster at SFI/HEA Irish Centre
of High-End Computing (ICHEC).

40

Information-set decoding

Methods differ in where the “errors” are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Running time is exponential for Goppa parameters n, k , d .

41

Information-set decoding

Methods differ in where the errors are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Ball-collision decoding/Dumer/Finiasz-Sendrier
p p q q t − 2p − 2q

k1 k2 ℓ1 ℓ2 n − k − ℓ

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer
refine multi-level collision search. No change in exponent for
Goppa parameters n, k , d .

42

Improvements

I Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

I Allow values of n between powers of 2: Get considerably
better optimization of (e.g.) the McEliece public-key size.

I Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

I Decrease key size by using fields other than IF2 (wild
McEliece).

I Decrease key size & be faster by using other codes. Needs
security analysis: some codes have too much structure.

43

More exciting codes

I We distinguish between generic attacks (such as
information-set decoding) and structural attacks (that use the
structure of the code).

I Gröbner basis computation is a generally powerful tool for
structural attacks.

I Cyclic codes need to store only top row of matrix, rest follows
by shifts. Quasi-cyclic: multiple cyclic blocks.

I QC Goppa: too exciting, too much structure.

I Interesting candidate: Quasi-cyclic Moderate-Density
Parity-Check (QC-MDPC) codes, due to Misoczki, Tillich,
Sendrier, and Barreto (2012).
Very efficient but practical problem if the key is reused
(Asiacrypt 2016).

I Hermitian codes, general algebraic geometry codes.

I Please help us update https://pqcrypto.org/code.html.

44

https://pqcrypto.org/code.html

Bonus slides

45

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!

I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?
S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?
S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?
S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc

= Hy = v
I Why does the weight restriction hold?

S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?

S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?
S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

This needs a special hash function so that c is sparse.

46

RaCoSS – Random Code-based Signature Schemes
I “Code-based” does not imply secure!
I System parameters: n = 2400, k = 2060.

Random matrix H ∈ IF
(n−k)×n
2 .

I Secret key: sparse S ∈ IFn×n
2 .

I Public key: T = H · S . (looks pretty random).
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

I Why are these equal?
v ′ = Hz +Tc = H(Sc + y) +Tc = HSc +Hy +Tc = Hy = v

I Why does the weight restriction hold?
S and y are sparse, but each entry in Sc is sum over n
positions

zi = yi +
n∑

j=1

Sijcj .

This needs a special hash function so that c is very sparse.
46

The weight-restricted hash function (wrhf)

I Maps to 2400-bit strings of weight 3.

I Only (
2400

3

)
= 2301120800 ∼ 231.09

possible outputs.

I Slow: 600 to 800 hashes per second and core.

I Expected time for a preimage on ≈ 100 cores: 10 hours.

47

The weight-restricted hash function (wrhf)

I Maps to 2400-bit strings of weight 3.

I Only (
2400

3

)
= 2301120800 ∼ 231.09

possible outputs.

I Slow: 600 to 800 hashes per second and core.

I Expected time for a preimage on ≈ 100 cores: 10 hours.

47

The weight-restricted hash function (wrhf)

I Maps to 2400-bit strings of weight 3.

I Only (
2400

3

)
= 2301120800 ∼ 231.09

possible outputs.

I Slow: 600 to 800 hashes per second and core.

I Expected time for a preimage on ≈ 100 cores: 10 hours.

47

RaCoSS

Implementation bug:

unsigned char c[RACOSS_N];

unsigned char c2[RACOSS_N];

/* ... */

for(i=0 ; i<(RACOSS_N/8) ; i++)

if(c2[i] != c[i])

/* fail */

return 0; /* accept */

48

RaCoSS

Implementation bug:

unsigned char c[RACOSS_N];

unsigned char c2[RACOSS_N];

/* ... */

for(i=0 ; i<(RACOSS_N/8) ; i++)

if(c2[i] != c[i])

/* fail */

return 0; /* accept */

...compares only the first 300 coefficients!
Thus, a signature with c[0...299] = 0 is accepted for

(2100
3

)
/
(2400

3

)
≈ 67%

of all messages.

48

RaCoSS

Implementation bug:

unsigned char c[RACOSS_N];

unsigned char c2[RACOSS_N];

/* ... */

for(i=0 ; i<(RACOSS_N/8) ; i++)

if(c2[i] != c[i])

/* fail */

return 0; /* accept */

...compares only the first 300 coefficients!
Thus, a signature with c[0...299] = 0 is accepted for

(2100
3

)
/
(2400

3

)
≈ 67%

of all messages.

48

The weight-restricted hash function (wrhf)

I Maps to 2400-bit strings of weight 3.

I Only (
2400

3

)
= 2301120800 ∼ 231.09

possible outputs.

I Slow: 600 to 800 hashes per second and core.

I Expected time for a preimage on ≈ 100 cores: 10 hours.

I crashed while brute-forcing: memory leaks

I another message signed by the first KAT:

NISTPQC is so much fun! 10900qmmP

49

Wait, there is more!
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

v + Tc =

 =

 H

z

I Sign without knowing S : (c , y , z ∈ IFn
2, v ,Tc ∈ IFn−k

2).

Pick a low weight y ∈ IFn
2. Compute v = Hy , c = h(v ,m).

Pick n − k columns of H that form an invertible matrix H1.
I Compute z = (z1||00 . . . 0) by linear algebra.
I Expected weight of z is ≈ (n − k)/2 = 170� 1564.
I Properly generated signatures have weight(z) ≈ 261.

50

Wait, there is more!
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

v + Tc =

 =

 H

z

I Sign without knowing S : (c , y , z ∈ IFn
2, v ,Tc ∈ IFn−k

2).
Pick a low weight y ∈ IFn

2. Compute v = Hy , c = h(v ,m).

Pick n − k columns of H that form an invertible matrix H1.
I Compute z = (z1||00 . . . 0) by linear algebra.
I Expected weight of z is ≈ (n − k)/2 = 170� 1564.
I Properly generated signatures have weight(z) ≈ 261.

50

Wait, there is more!
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

v + Tc =

 =

 H

z

I Sign without knowing S : (c , y , z ∈ IFn
2, v ,Tc ∈ IFn−k

2).
Pick a low weight y ∈ IFn

2. Compute v = Hy , c = h(v ,m).
Pick n − k columns of H that form an invertible matrix H1.

I Compute z = (z1||00 . . . 0) by linear algebra.
I Expected weight of z is ≈ (n − k)/2 = 170� 1564.
I Properly generated signatures have weight(z) ≈ 261.

50

Wait, there is more!
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

v + Tc =

 =

 H1 H2

z1

z2

I Sign without knowing S : (c , y , z ∈ IFn
2, v ,Tc ∈ IFn−k

2).
Pick a low weight y ∈ IFn

2. Compute v = Hy , c = h(v ,m).
Pick n − k columns of H that form an invertible matrix H1.

I Compute z = (z1||00 . . . 0) by linear algebra.
I Expected weight of z is ≈ (n − k)/2 = 170� 1564.
I Properly generated signatures have weight(z) ≈ 261.

50

Wait, there is more!
I Sign m: Pick a low weight y ∈ IFn

2.
Compute v = Hy , c = h(v ,m), z = Sc + y . Output (z , c).

I Verify m, (z , c): Check that weight(z) ≤ 1564.
Compute v ′ = Hz + Tc . Check that h(v ′,m) = c .

v + Tc =

 =

 H1 H2

z1

z2

I Sign without knowing S : (c , y , z ∈ IFn
2, v ,Tc ∈ IFn−k

2).
Pick a low weight y ∈ IFn

2. Compute v = Hy , c = h(v ,m).
Pick n − k columns of H that form an invertible matrix H1.

I Compute z = (z1||00 . . . 0) by linear algebra.
I Expected weight of z is ≈ (n − k)/2 = 170� 1564.
I Properly generated signatures have weight(z) ≈ 261. 50

RaCoSS – Summary

I Bug in code: bit vs. byte confusion meant only every 8th bit
verified.

I Preimages for RaCoSS’ special hash function: only

(
2400

3

)
= 2301120800 ∼ 231.09

possible outputs.

I The code dimensions give a lot of freedom to the attacker –
our forged signature is better than a real one!

51

